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Accurately risk-stratifying patients is a key
component ofhealth care outcomes assessment. And,
many health care organizations increasingly are
relying upon automated means for assistance in
making patient risk-stratification decisions.
Unfortunately, the process of outcome model
development, as it is currently practiced, is both time
consuming and dificult. We investigated the relative
abilities of three modeling techniques (logistic
regression, artificial neural network (ANN), and
Bayesian) to rapidly develop models for risk-
stratifying patients. Our results demonstrated that
all three modeling techniques perform equally well in
certain situations. However, the Bayesian model
with conditional independence had the best overall
performance. Unfortunately, none of the models
were able to achieve the degree of accuracy which
would be required in a medical setting.

INTRODUCTION

Risk-stratification is essentially a problem of
accurately classifying patients into different risk
categories. Whether the health care practitioner is
triaging myocardial infarction patients in a chest pain
unit or selecting patients with severe coronary artery
disease, the problem reduces to one of assigning the
patient to the proper category. Classification has
been defined as, "a problem solving method that
associates a set of categories with possible problem
solutions."' In making a classification, the decision
maker first evaluates the characteristics of an object
and then uses this evaluation to assign the object to
one category within a set of possible solutions. In
risk-stratification, the patient is the object and the
different risk strata are the categories.

Logistic regression has traditionally been used to
model medical classification problems. However,
recent studies have reported levels of accuracy with
ANNs that are greater than those previously reported
with logistic regression.2 Despite these successes,

a major impediment to the widespread acceptance of
ANNs in medical classification is the fact that they do
not provide explanations for their forecasts which are
easily interpreted by human operators. Thus, in
choosing between ANNs and logistic regression for
medical classification modeling there is an implicit
choice between forecasting accuracy and a technique
whose prescriptions are readily understood.
Unfortunately, both of these factors are often
important in medical classification problems. Thus, a
method for modeling medical classification problems
which could equal or exceed the accuracy of ANNs
while also providing the intelligible explanations of
logistic regression would represent an advance over
both ofthese classification methods.

Bayesian models have been used to model medical
classification problems and their accuracy has
exceeded that of logistic regression.5 Bayesian
models also have an advantage over ANNs in that
their forecasts are based upon likelihood ratios which
are easily interpretable by health care professionals.
To date, no studies have compared the relative
accuracies of all three modeling techniques (logistic
regression, ANN, and Bayesian) in the same problem
domain. A few medical classification studies have
compared Bayesian models with classical statistical
techniques or Bayesian models with ANNs. 6,,7, 8
However, these studies have typically used national
averages or expert judgments to create their Bayesian
models while they trained the classical statistical
techniques and the ANNs on random samples of the
same populations they later used for comparative
testing. Thus, there was no way of determining
whether these other techniques were in fact superior
to Bayesian probability models or whether they
merely trained on more appropriate data. Recently,
researchers have begun to separate the subjective
assessment of probabilities from the dynamics of
Bayesian probability models.5' 9 This innovation has
led to the development of Bayesian learning systems
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which are able to create their own models directly
from training data sets.

Chard first tested the relationships between Bayesian
model accuracy, training sample size and training
attribute set size.'° His work identified key training
sample and attribute set size thresholds which were
used as a guide in this study's research design.

MATERIALS AND METHODS

The data in this study were collected under a Health
Care Finance Administration grant." Sixteen
questions in that data base corresponded to the factors
used in the APACHE II system to predict patient
outcomes.'2 Another question in this database
described patient discharge status (coded as dead or
alive) and was used as the outcome which this study's
models predicted.

There were a total of 1139 cases in the myocardial
infarction database. Initial training samples were
selected in sizes of 100 and 600 cases. These sizes
were chosen because they were outside the range
(200 to 500 cases) previously used by Chard to test
the simple Bayes model's performance.'0 Chard
reported that there were not enough cases for accurate
prediction below his range and that model accuracy
did not improve above his range. The test sample
size was set at 500 cases. Training and test samples
were constructed by selecting the last 500 cases that
were enrolled in the database as the testing sample
and then randomly selecting two training samples of
100 and 600 cases from the remaining 639 cases, with
replacement. This selection method allowed us to
simulate a prospective sampling procedure. Two sets
of training and testing data were constructed: one in
which missing values were allowed and the other in
which missing values were imputed as normal.

Attributes were selected in sizes of 3 and 11
APACHE II questions. These sizes were chosen
because they were below and above the seven
attribute set size previously used in Chard's study.'0
Attributes were selected from the sixteen APACHE II
questions ordered by their relative informativeness in
predicting mortality for myocardial infarction patients
admitted to a hospital . This assessment of relative
informativeness was made by a physician managing a
hospital intensive care unit.

A total of eight training sample situations were
created for our evaluations; four with missing data
values imputed as normal and four where missing
data values were not imputed. The four training

sample situations in each of these groups were: (1)
100 training cases and 3 attributes, (2) 100 training
cases and 11 attributes, (3) 600 training cases and 3
attributes, and (4) 600 training cases and 11
attributes.

Three classification techniques were assessed:
logistic regression, Bayesian, and ANN. Each
classification technique included models with and
without interactions. Thus, a total of six individual
models were evaluated in this study. The two
logistic regression models were called: Logistic
Simple and Logistic Interaction. The Logistic Simple
model omitted interaction terms and the Logistic
Interaction model included them. The two Bayesian
models were called: Bayes Simple and Bayes Proper.
Since Bayesian systems model attribute interactions
through conditional dependence, the Bayes Simple
model (without conditional dependence) did not
model interactions and the Bayes Proper model (with
conditional dependence) modeled interactions. The
two ANN models were called ANN 0 Hidden Layers
and ANN 1 Hidden Layer. Since ANNs model
interactions through hidden network layers, the ANN
model with 0 Hidden Layers did not model
interactions while the ANN with 1 Hidden Layer did
model interactions. The number of ANN hidden
layers has been varied in previous studies.'3'4
Both logistic regression models were created using
SAS's LOGIST procedure in stepwise mode. And,
interactions were modeled as separate variables.

Bayesian models were created using a system
developed for a previous study.5 This system enters
attributes into Bayesian models according to an a
priori assessment of their potential information value.
In this assessment, the attribute with the most extreme
likelihood ratio among those remaining in the data set
is selected next for model inclusion. Two orders of
conditioning were used in this study to model
attribute interactions. The Bayes Simple model had
zero orders of conditioning and the Bayes Proper
model implemented conditioning on the two previous
attributes entered into the model. Attributes were
considered conditionally dependent if the ratio of an
attribute's posterior likelihood ratio (after selection)
to its prior likelihood ratio (before selection)
exceeded 1.2. Thus, conditional dependence
measured the change in the prior likelihood ratio that
occurred when an attribute was considered for
inclusion in the model. The Bayes Simple model,
with no conditioning, included all cases in its
estimates for each attribute value. Since the Bayes
Proper model partitioned the data set, fewer cases

444



were used to estimate each successive attribute's
value. Thus, a stopping rule was needed to determine
when there were not enough cases remaining in the
data set to reliably estimate an attribute's likelihood
ratio value. Our stopping rule required that there be
at least ten cases remaining in the training sample
before a question was evaluated.

Prior to the study a consultant from the ANN vendor
(California Scientific Software) reviewed the
APACHE II data base and recommended the ANN
configuration used in this study. Attributes without
missing data values were implemented as input
neurons in numeric format and attributes with missing
data values were implemented as input neurons in
binary encoded form. This method for implementing
attributes with missing values significantly increased
the number of input and hidden neurons required by
the ANN models. Since the output category was
already encoded in binary form, it was implemented
as a single neuron. The number of hidden neurons
was calculated as the average of the number of input
and output neurons. This method is customarily used
to determine the initial number of hidden layer
neurons and was recommended by the consultant.
One hazard of binary encoding is that an attribute
value may occur in the testing sample which does not
also occur in the training sample. When this situation
arose, attribute values in the testing sample were
changed to the next lowest value which appeared in
the training sample. Points to stop ANN training
were assessed using the minimal root mean square
and average error statistics.

The area under the ROC curve is an accepted statistic
for measuring the accuracy of a dichotomous
outcome variable and was used as the performance
measure in this study. 5 The ROC curve area
measured the ability of our models to discriminate
between patients who lived and died. Thus, an ROC
area of 1.00 denotes perfect discrimination and an
ROC area of 0.500 denotes a lack of discriminatory
ability. ROC curve areas in this study were
calculated using the methods recommended by
Hanley and McNeil'6 17 ROC areas for different
models were compared using the z statistic.

RESULTS

This study's results are presented in Tables 1 and 2.
When missing data values were imputed as normal
(Table 1), there were no statistically significant
differences in ROC areas across all six models for
two of the situations tested. These were 100
training cases with 3 attributes and 600 training cases

with 3 attributes. However, there were statistically
significant differences in the other two situations.
With 100 training cases and 11 attributes, both
Bayesian models outperformed the logistic regression
and ANN models. And, with 600 training cases and
11 attributes, all other models outperformed the ANN
with 1 hidden layer.

In Table 1, the logistic regression models did not
achieve maximum accuracy (ROC = 0.733) until they
trained with 600 cases and 11 attributes. Their ROC
areas in this situation were significantly greater than
the other three situations tested. In contrast, the
Bayes Simple model achieved its maximum accuracy
(ROC = 0.749) with only 100 cases and 11 attributes.
The maximum accuracy of the Bayes Proper model
with 600 cases and 11 attributes (ROC = 0.732) was
only slightly larger than with 100 cases and 11

Table 1: No Missing Data (Imputed As Normal)
100 Cases 600 Cases

Model 3 At 11 At 3 At 11 At
Logist: Simple 0.663 0.645 0.627 0.733
Logist: Interact 0.663 0.663 0.627 0.733
Bayes: Simple 0.656 0.749 0.644 0.735
Bayes: Proper 0.654 0.729 0.644 0.732
ANN: 0 Hidn 0.663 0.662 0.650 0.746
ANN: 1 Hidn 0.631 0.600 0.650 0.692
Note: Cell values are ROC areas.

attributes (ROC = 0.729). For both Bayes models,
their accuracy with 100 or 600 cases and 11 attributes
was significantly greater than in either of the other
two situations with only 3 attributes. Both ANN
models reached maximum accuracy with 600 cases
and 11 attributes (ROC = 0.746 for 0 hidden layers
and 0.692 for 1 hidden layer). And, the ANNs with
600 cases and 11 attributes were significantly more
accurate than in the other three situations.

Table 2: Missing Data Allowed (Not Imputed)

Model
Logist:
Logist:
Bayes:
Bayes:
ANN:
ANN:

Simple
Interact
Simple
Proper
0 Hidn
I Hidn

100 Case
3 At 11 At
0.500 0.500
0.500 0.500
0.653 0.730
0.654 0.715
0.619 0.568
0.549 0.598

600 Case
3 At 11 At
0.654 0.689
0.654 0.689
0.657 0.730
0.657 0.727
0.650 0.594
0.557 0.534

Note: Cell values are ROC areas.

When missing data values were not imputed (Table
2), some of the ROC areas were lower, but the basic
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relationships between modeling techniques remained
the same. With 100 training cases and 3 attributes,
both Bayesian models and the ANN without hidden
layers outperformed the other models. And, with 100
training cases and 11 attributes, both Bayesian
models outperformed all other models. When there
were 600 training cases and 3 attributes, all other
models outperformed the ANN with I hidden layer.
And, with 600 training cases and 11 attributes, both
logistic regression and both Bayesian models
outperformed both ANN models.

In Table 2, the logistic regression models did not
achieve maximum accuracy (ROC = 0.689) until they
trained with 600 cases and 11 attributes. Their ROC
areas in this situation were significantly greater than
the other three situations tested.- The Bayes Simple
model achieved its maximum accuracy (ROC =
0.730) with 11 attributes and either 100 or 600 cases.
And, the Bayes Proper model reached maximum
accuracy with 600 cases and 11 attributes (ROC =
0.727). With 600 cases and 11 attributes, the Bayes
Proper model was more accurate than in situations
with 100 or 600 training cases and 3 attributes; but it
was no more accurate than when it trained with only
100 cases and 11 attributes. Both ANN models
experienced problems when missing data values were
allowed. The ANN with no hidden layers reached
maximum accuracy with 600 cases and 3 attributes
(ROC = 0.650) and the ANN with one hidden layer
achieved maximum accuracy with 100 cases and 11
attributes. However, there were no situations for
either ANN model in which they were significantly
more accurate.

DISCUSSION AND CONCLUSIONS

This research design assumed that the major
differences in model accuracy when missing data
values were imputed (Table 1) would be determined
by whether the models included interactions or not.
However, the only significant differences (statistical
or numeric) between models with and without
interactions using the same technique occurred for
ANNs and, in these, the models without hidden layers
(no intreactions) exceeded the performance of models
with hidden layers (with interactions). Thus, this
research design assumption was not supported.

This design also assumed that the major differences
in model accuracy when missing data values were
allowed (Table 2) would be determined by whether
the modeling technique was able to effectively
manage missing data. The Bayesian models proved
to be more accurate than the other techniques in these

situations because they were able to more effectively
manage missing data values. Thus, this research
design assumption was supported.

When missing data values were imputed, the
Bayesian models with 100 training cases responded to
an increase in attributes (from 3 to 11) and did not
require a corresponding increase in the number of
training cases (from 100 to 600) to achieve maximum
accuracy. In contrast, both the logistic regression and
ANN models required larger training set sizes to
increase their accuracy. Additionally, the
performance of both the logistic regression and the
ANN models suffered when missing data values were
allowed while the Bayesian models had no significant
difference in performance with or without missing
values.

This study was a first test and we clearly need to
develop better means for pre-configuring learning
systems as well as better means for imputing or
managing missing data values in ANNs. None of our
models were able to achieve the 0.800 to 0.900 ROC
areas which are commonly reported for classification
models in the medical literature. Nonetheless, the
Bayes Simple model did equal or exceed the accuracy
of all other models in all situations tested. It achieved
maximum accuracy with a smaller training sample,
effectively managed missing data values, and did not
require extensive set-up and configuration as was the
case for the logistic regression and ANN models. For
these reasons it deserves further attention and should
be seen as a viable alternative to these other modeling
techniques.
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